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Solution Set 2

1. Griffiths 2.18 First we need the electric field inside a uniformly charged sphere. Imagining a spherical Gaussian
surface of radius r inside the charged sphere, symmetry tells us that the electric field must be pointing radially
outward and have the same magnitude over the whole surface. So

∫
E(r)· da = 4πr2E(r) = Qenc/ε0 = ρ4πr3/3.

Thus E(r) = ρr/(3ε0) r̂ = ρr/(3ε0) r where r is the unit vector from the center of the charged sphere to the
point in question.

In this problem we have two charged spheres with the vector d pointing from the center of the positive sphere
to the center of the negative sphere. For a point P in the region of overlap, there will be a contribution to the
E-field from both spheres. If we let r+ be the vector from the center of the positive sphere to P and r− be the
vector from the center of the negative sphere to P , then the total E-field at P is

E = E+ +E− =
ρ

3ε0
r+ +

−ρ
3ε0

r− =
ρ

3ε0
(r+ − r−).

But from the figure, we see that r+ − r− = d. So the total electric field in the overlap region is E = ρ/3ε0 d.

r+

r−

+ρ

−ρ

P

d
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2. Griffiths 2.20 We’ll calculate the curl of E, because a real electrostatic field must have zero curl. For (a) we
have

∇×E = −2kz x̂− 3kz ŷ − kx ẑ �= 0,

so (a) is not a possible electrostatic field. For (b),

∇×E = k(2z − 2z) x̂+ (0− 0) ŷ + (2y − 2y) ẑ = 0

Thus (b) is a possible electrostatic field. Now we want to compute the potential at some point (x0, y0, z0),
where the origin is at zero potential, using the relationship that V = − ∫

E · d�. Let’s choose a simple path
that goes in straight lines from (0, 0, 0) to (x0, 0, 0) to (x0, y0, 0) to (x0, y0, z0). There are three parts to the
integral, and on each part we have a different E · d� = ky2 dx+ k(2xy+ z2) dy+2kyz dz. On the first segment,
y = z = dy = dz = 0 so we get no contribution because E · d� = 0. On the second segment, z = dz = dx = 0
and x = x0, so we get the contribution

∫
E · d� = 2kx0

∫ y0

0
y dy = kx0y

2
0 . On the final segment, dx = dy = 0

while x = x0 and y = y0, so we get
∫
E · d� = 2ky0

∫ z0

0
z dz = ky0z

2
0 . Now replacing x0 with x and so on,

we find V (x, y, z) = − ∫
E · d� = −k(xy2 + yz2). We can check that we did the integrals right by computing

E = −∇V = k
(
y2 x̂+ (2xy + z2) ŷ + 2yz ẑ

)
, which gives us back the electric field we started with.

3. Griffiths 2.25 (c) We can use the second equation in (2.30) to calculate the potential due to a disk with
uniform surface charge:

V (r) =
1

4πε0

∫
σ(r′)
r

da′.
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Using cylindrical coordinates with angle φ and radius s, for this case da′ = σs dsdφ and r =
√
s2 + z2.

V =
1

4πε0

∫ 2π

0

dφ

∫ R

0

σsds√
s2 + z2

=
2πσ
4πε0

[√
s2 + z2

]R

0
=

σ

2ε0

(√
R2 + z2 − z

)

Now, V is independent of x and y. Thus ∂V
∂x = ∂V

∂y = 0, so

E = −∇V = −∂V
∂z

ẑ = − σ

2ε0

[
1
2

2z√
R2 + z2

− 1
]
=
zσ

2ε0

[
1
z
− 1√

R2 + z2

]
ẑ.

This is exactly what we got calculating the electric field directly in Problem Set 1.

4. Griffiths 2.32 (a-b) First we need to find the potential and electric field produced by a uniformly charged solid
sphere of radius R and charge q. Outside the sphere, the electric field looks just like that from a point charge,
E = 1

4πε0

q
r2 r̂. Inside the sphere, we can use Gauss’s Law:

∫
E ·da = 4πr2E(r) = Qenc/ε0 = qr3/(ε0R3) ⇒ E =

1
4πε0

qr
R3 r̂. To find the potential, we need to do a line integral of the electric field in from infinity. For r > R,

V (r) = −
∫ r

∞

1
4πε0

q

r′2
dr′ =

1
4πε0

q

r′

∣∣∣∣
r

∞
=

q

4πε0
1
r
.

For r < R,

V (r) = −
∫ R

∞

1
4πε0

q

r′2
dr′ −

∫ r

R

1
4πε0

q

R3
r′dr′ =

q

4πε0

[
1
R

− 1
R3

(
r2 −R2

2

)]
=

q

4πε0
1
2R

(
3− r2

R2

)

(a) Using equation 2.43, with ρ =
q

(4/3)πR3
inside the sphere and zero outside, we have

W =
1
2

∫
ρV dτ =

1
2

3q
4πR3

∫
dΩ

∫ R

0

q

8πε0R

(
3− r2

R2

)
r2 dr =

3q24π
64π2ε0R4

[
r3 − r5

5R2

]R

0

=
1

4πε0

(
3q2

5R

)

(b) Now using equation 2.45:

W =
ε0
2

∫
E2dτ =

ε0
2

(
q

4πε0

)2 ∫
dΩ

{∫ ∞

R

1
r4
r2dr +

∫ R

0

r2

R6
r2 dr

}

=
q2

8πε0

{[
−1
r

]∞

R

+
[
r5

5R6

]R

0

}
=

1
4πε0

(
3q2

5R

)

Fortunately, both the solutions give the same result.

5. Griffiths 2.36 (a-c)

(a) For each of the cavities, we may imagine a Gaussian surface that is completely in the conductor and
surrounds the cavity. Since there is no electric field in the metal of the conductor,

∫
E · da = 0. By

Gauss’s Law this means that the charge enclosed must be zero, so the total charge on the inner surface
of the cavity must be exactly opposite of the point charge contained in the cavity. By symmetry, there
is no reason for the surface charge to be anything but uniformly distributed. Thus σa = qa/4πa2 and
σb = qb/4πb2. Since the conductor is neutral, the charge on the outer surface must be opposite the charge
on the inner surface, and again it will be uniformly distributed, so σR = (qa + qb)/4πR2.

(b) To find the field outside the conductor, the argument is exactly the same as in Example 2.9 in the text.
The conductor makes the electric field outside look exactly like two point charges qa and qb at the origin.

So E =
1

4πε0
qa + qb
r2

r̂, where r̂ is a unit vector from the center of the conducting sphere.
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(c) The surface charge in cavity a cancels the electric field due to the point charge qa everywhere outside
the cavity. So the only source of electric field in cavity a is the point charge qa and the surface charge.
But using Gauss’s Law and the spherical symmetry, the electric field inside the cavity is just that of the

point charge qa, namely Ea =
1

4πε0
qa
r2a

r̂a, where ra is a unit vector from the center of cavity a. The same

reasoning applies to cavity b, so Eb =
1

4πε0
qb
r2b

r̂b.

6. Griffiths 2.39 To find the capacitance between two conductors, we imagine placing a charge +Q on one and
−Q on the other and then calculate the potential difference between them. Then we can find the capacitance
from C = Q/V . (Note that the capacitance should depend only on the physical size of the system and not on
the imaginary charge Q.)

So in this case lets put a charge per unit length +λ on the inner cylinder, and −λ on the outer cylinder.
To calculate the potential difference between the two cylinders, we need to integrate the electric field. Since
the charge is evenly distributed, we can draw a Gaussian cylinder with radius r and length L between the
two conductors. The electric field is pointing radially, and we can find its magnitude:

∫
E · da = 2πrLE =

Qenc/ε0 = λL/ε0 ⇒ E = λ/2πε0r. The potential difference is then

V (b)− V (a) = −
∫ b

a

E · d� = − λ

2πε0

∫ b

a

1
r
dr = − λ

2πε0
ln

(
b

a

)
.

Since the inner cylinder is at a higher potential (the potential drops in going from a to b), the positive voltage
between the two conductors is V = V (a) − V (b) = λ

2πε0
ln

(
b
a

)
. Then C = Q/V = λL/V = 2πε0L

ln ( b
a )

so the

capacitance per unit length is C/L =
2πε0
ln

(
b
a

) . Note that this is independent of λ and Q.

7. Griffiths 2.50 The differential form of Gauss’s Law tells us ∇ · E = ρ/ε0. Thus in this case, we find ρ =
ε0∇ · E = ε0a. This is a constant, uniform charge density. So why should the electric field point in the x-
direction and not in the y-direction? In fact, it could, because you find exactly the same charge density for the
fields E = ay ŷ and E = (a/3)r. The point is that the differential equations ∇· E = ρ/ε0 and ∇× E = 0 are
not sufficient to determine the electric field; boundary conditions are also necessary. It is just like asking for a
function whose derivative is 3. There are many such possibilities: f(x) = 3x, g(x) = 3x + 10, h(y) = 3y + c;
until you know some boundary conditions (such as f(0) = 2), you cannot give a unique answer. Knowing the
field you can determine the charge distribution, but it doesn’t work in reverse: knowing the charge distribution
is not always enough to determine the field.

8. Handout We have two concentric spherical shells, and the outer one is being driven with a potential φ2(t) =
V0 cosωt. We make the approximation that the potential between the spheres is φ2(t) everywhere. This would
be true for the original version of Gauss’s Law (i.e. for a zero mass photon), so call that solution the “original
solution”. The original solution is not an exact solution to the new equations, but since the change in the
equations is very small, the original solution must be very close to the “new solution”. So we will plug in the
“original solution” to the new equation and see how much the “original solution” is modified. The error we
make here is second order in the difference between the “original solution” and the “new solution”, so it can
be ignored for the purposes of determining the sensitivity required to carry out this experiment. We start with
the given differential equation and integrate both sides over a sphere of radius R1 < r < R2.

∇·E =
ρ

ε0
− φ2

λ̄2
⇒

∫
∇·E dτ =

∫ [
ρ

ε0
− φ2

λ̄2

]
dτ

Now we can compute both sides of this equation separately. By symmetry, we assume that the electric field
is purely radial and has the same magnitude all over our spherical surface. Thus

∫
E · dτ = 4πr2E(r). The

second term on the right hand side is independent of r, and
∫
ρ dτ = Qenc. So we find, after substituting in
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the definition of λ̄,

4πr2E(r) =
[
Qenc

ε0
− 4

3
πr3

φ2

λ̄2

]
⇒ E(r) =

[
q

4πε0r2
− V0m

2
0c

2

3h̄2 r cosωt
]
r̂.

Here Qenc = q, the charge on the inner sphere.

Now, to calculate the potential difference we integrate the electric field.

V (R2)− V (R1) = −
∫ R2

R1

E · d� = −
∫ R2

R1

E(r)dr =
q

4πε0

(
1
R2

− 1
R1

)
+
V0m

2
0c

2

3h̄2 cos(ωt)
1
2
(
R2

2 −R2
1

)
Now lets plug in some numbers. The wording is a little confusing, since V0 is the amplitude of φ2, it can’t
really be the peak-t0-peak voltage. So I’ll just take V0 = 10 kV and compute the amplitude of the measured
voltage. If you did something slightly different, that fine. The other numbers are q = 0, R1 = 0.5 m, R2 = 1.5
m, and m0 = 10−15 eV/c2. Be careful about converting all the units. I get ∆V = 8.53 × 10−14 cosωt volts.
Anything between half or twice this value is acceptable.
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